概述
陶瓷气体放电管是一由电压导通的开关型器件,使用中并联在被保护设备线与线或线与地端。当外来浪涌电压未达其动作电压时,放电管呈高阻(绝缘电阻达1000MΩ以上)状态,而一旦浪涌电压达到其动作电压时,放电管内部放电间隙立即发生电击穿现象,此时放电管相当于一导体,浪涌电压在50ns时间内即被迅速短路至接近零电压,浪涌电流被迅速导入地,从而对设备起到保护作用。当浪涌电压消失时,放电管则立即熄灭并恢复为高阻状态,静待下一次的动作。
陶瓷气体放电管的内部结构
陶瓷气体放电管GDT是在放电间隙内充入适当的气体介质,配以高活性的电子发射材料及放电诱导设计,通过真空钎焊而制成的一种特金瓷气体放电器件,它主要用于瞬时大电压的过电压保护。陶瓷放电管并联在线路中,在正常情况下,放电管因其特有的高阻抗及低电容特性,对线路的正常工作几乎没有任何影响。当有异常浪涌窜入时,放电管以纳秒的速度响应,首先被击穿放电,其阻抗迅速下降,几乎呈短路状态,此时放电管将浪涌电流通过地线泄放给大地,从而保护了线路及元件。当异常浪涌消失后,放电管又迅速恢复到高阻状态,线路继续正常工作。
陶瓷气体放电管工作原理
陶瓷气体放电管是由封装在充满惰性气体的陶瓷管中相隔一定距离的两个电极组成。其电气性能基本上取决于气体种类、气体压力以及电极距离,中间所充的气体主要是氖或氩,并保持一定压力,电极表面涂以发射剂以减少电子发射能。这些措施使得动作电压可以调整(一般是70伏到几千伏),而且可以保持在一个确定的误差范围内。当其两端电压低于放电电压时,气体放电管是一个绝缘体(电阻 Rohm>100MΩ)。当其两端电压升高到大于放电电压时,产生弧光放电,气体电离放电后由高阻抗转为低阻抗,使其两端电压迅速降低,大约降几十伏。气体放电管受到瞬态高能量冲击时,它能以10-6秒量级的速度,将其两极间的高阻抗变为低阻抗,通过高达数十千安的浪涌电流。
陶瓷气体放电管的选型原则
1、直流击穿电压VS的选择:直流击穿电压VSdc的最小值应大于可能出现的最高电源峰值电压或最高信号电压的1.2倍以上。
2、在快速脉冲冲击下,陶瓷气体放电管气体电离需要一定的时间(一般为0.2~0.3μs,最快的也有0.1μs左右),因而有一个幅度较高的尖脉冲会泄漏到后面去。若要抑制这个尖脉冲,有以下几种方法:
2-1、在放电管上并联电容器或压敏电阻;
2-2、在放电管后串联电感或留一段长度适当的传输线,使尖脉冲衰减到较低的电平;
2-3、采用两级保护电路,以放电管作为第一级,以TVS管或半导体过压保护器作为第二级,两级之间用电阻、电感或自恢复保险丝隔离。
3、冲击放电电流的选择:要根据线路上可能出现的最大浪涌电流或需要防护的最大浪涌电流选择。放电管冲击放电电流应按标称冲击放电电流(或单次冲击放电电流的一半)来计算。
4、续流问题:为了使放电管在冲击击穿后能正常熄弧,在有可能出现续流的地方(如有源电路中),可以在放电管上串联压敏电阻或自恢复保险丝等限制续流,使它小于放电管的维持电流。
5、陶瓷气体放电管因击穿电压误差较大,一般不作并联使用。
产品信息
可通过以下方式查看更多信息:https://semiware.com/products/general-gas-tube/。如果您有技术问题,请按以下方式联系陶瓷气体放电管(Gas Discharge Tubes)产品经理: GDT-PM@semiware.com。
关于Semiware
优秀的电路保护解决综合服务商,拥有电路保护器件的完善产品阵容以及优秀的EMC管理团队。Semiware 凭借其在半导体领域的技术和终端产品的应用背景,为电子、汽车和工业市场上的客户提供服务。如果您有技术问题,请按以下方式联系技术支持团队:邮箱:fae01@semiware.com; 电话:86-21-3463-7654; 免费技术支持热线:400-021-5756 ;如需了解更多信息,请访问semiware 官方网站:https://semiware.com
评论 (0)